Chebyshev type inequalities for conformable fractional integrals

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ostrowski type inequalities involving conformable fractional integrals

In the article, we establish several Ostrowski type inequalities involving the conformable fractional integrals. As applications, we find new inequalities for the arithmetic and generalized logarithmic means.

متن کامل

On Feng Qi-type Integral Inequalities for Conformable Fractional Integrals

In this paper, we establish the generalized Qi-type inequality involving conformable fractional integrals. The results presented here would provide extensions of those given in earlier works. 1. Introduction In the last few decades, much signi…cant development of integral inequalities had been established. Integral inequalities have been frequently employed in the theory of applied sciences, di...

متن کامل

Hermite-hadamard Type Inequalities via Conformable Fractional Integrals

In this study, a new identity involving conformable fractional integrals is given. Then, by using this identity, some new Hermite-Hadamard type inequalities for conformable fractional integrals have been developed.

متن کامل

CHEBYSHEV TYPE INEQUALITIES FOR THE SAIGO FRACTIONAL INTEGRALS AND THEIR q–ANALOGUES

The aim of the present paper is to obtain certain new integral inequalities involving the Saigo fractional integral operator. It is also shown how the various inequalities considered in this paper admit themselves of q -extensions which are capable of yielding various results in the theory of q -integral inequalities. Mathematics subject classification (2010): 26D10, 26A33, 05A30.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Miskolc Mathematical Notes

سال: 2019

ISSN: 1787-2405,1787-2413

DOI: 10.18514/mmn.2019.2766